Quorum-sensing crosstalk-driven synthetic circuits: from unimodality to trimodality.

نویسندگان

  • Fuqing Wu
  • David J Menn
  • Xiao Wang
چکیده

Widespread quorum-sensing (QS) enables bacteria to communicate and plays a critical role in controlling bacterial virulence. However, effects of promiscuous QS crosstalk and its implications for gene regulation and cell decision-making remain largely unknown. Here we systematically studied the crosstalk between LuxR/I and LasR/I systems and found that QS crosstalk can be dissected into signal crosstalk and promoter crosstalk. Further investigations using synthetic positive feedback circuits revealed that signal crosstalk significantly decreases a circuit's bistable potential while maintaining unimodality. Promoter crosstalk, however, reproducibly generates complex trimodal responses resulting from noise-induced state transitions and host-circuit interactions. A mathematical model that integrates the circuit's nonlinearity, stochasticity, and host-circuit interactions was developed, and its predictions of conditions for trimodality were verified experimentally. Combining synthetic biology and mathematical modeling, this work sheds light on the complex behaviors emerging from QS crosstalk, which could be exploited for therapeutics and biotechnology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quorum Sensing Communication Modules for Microbial Consortia.

The power of a single engineered organism is limited by its capacity for genetic modification. To circumvent the constraints of any singular microbe, a new frontier in synthetic biology is emerging: synthetic ecology, or the engineering of microbial consortia. Here we develop communication systems for such consortia in an effort to allow for complex social behavior across different members of a...

متن کامل

Quantifying the strength of quorum sensing crosstalk within microbial communities

In multispecies microbial communities, the exchange of signals such as acyl-homoserine lactones (AHL) enables communication within and between species of Gram-negative bacteria. This process, commonly known as quorum sensing, aids in the regulation of genes crucial for the survival of species within heterogeneous populations of microbes. Although signal exchange was studied extensively in well-...

متن کامل

Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system.

Small changes in transcriptional activity often significantly affect phenotype but are not detectable in vivo by conventional means. To address this problem, we present a technique for detecting weak transcriptional responses using signal-amplifying genetic circuits. We apply this technique to reveal previously undetectable log phase responses of several Rhl quorum sensing controlled (qsc) prom...

متن کامل

Can the Natural Diversity of Quorum-Sensing Advance Synthetic Biology?

Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communicati...

متن کامل

Oscillations by Minimal Bacterial Suicide Circuits Reveal Hidden Facets of Host-Circuit Physiology

Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry & biology

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2014